M1.(a) line goes up before it goes down
energy given out correctly labelled
activation energy labelled correctly
(b) electrostatic force of attraction between shared pair of negatively charged electrons
and both positively charged nuclei
(c) bonds formed $=348+4(412)+2(276)=2548 \mathrm{~kJ} / \mathrm{mol}$
bonds broken - bonds formed $=612+4(412)+(\mathrm{Br}-\mathrm{Br})-2548=95 \mathrm{~kJ} / \mathrm{mol}$

> Alternative approach without using C-H bonds
> For step 1 allow $=348+2(276)=900 \mathrm{~kJ} / \mathrm{mol}$
> Then for step 2 allow $612+(B r-B r)-900=95 \mathrm{~kJ} / \mathrm{mol}$

193 (kJ / mol)
accept (+)193 (kJ / mol) with no working shown for 3 marks
-193(kJ / mol) scores 2 marks
allow ecf from step 1 and step 2
(d) Level 3 (5-6 marks):

A detailed and coherent explanation is given, which demonstrates a broad understanding of the key scientific ideas. The response makes logical links between the points raised and uses sufficient examples to support these links. A conclusion is reached.

Level 2 (3-4 marks):

An explanation is given which demonstrates a reasonable understanding of the key scientific ideas. A conclusion may be reached but the logic used may not be clear or linked to bond energies.

Level 1 (1-2 marks):

Simple statements are made which demonstrate a basic understanding of some of the relevant ideas. The response may fail to make logical links between the points raised.

0 marks:

No relevant content.

Indicative content

Size and strength

- chlorine atoms have fewer electron energy levels / shells
- chlorine atoms form stronger bonds
- $\quad \mathrm{Cl}-\mathrm{Cl}$ bond stronger then $\mathrm{Br}-\mathrm{Br}$
- $\quad \mathrm{C}-\mathrm{Cl}$ bond stronger that $\mathrm{C}-\mathrm{Br}$

Energies required

- more energy required to break bonds with chlorine
- more energy given out when making bonds with chlorine
- overall energy change depends on sizes of energy changes

Conclusions

- if $\mathrm{C}-\mathrm{Cl}$ bond changes more, then less exothermic
- if $\mathrm{C}-\mathrm{Cl}$ bond changes more then more exothermic
- can't tell how overall energy change will differ as do not know which changes more.

M2.(a) $\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
allow 1 mark for correct formulae
(b) sensible scales, using at least half the grid for the points
all points correct
$\pm 1 / 2$ small square
allow 1 mark if 8 or 9 of the points are correct
best fit line
(c) steeper line to left of original
line finishes at same overall volume of gas collected
(d) acid particles used up
allow marble / reactant used up
so concentration decreases
allow surface area of marble decreases
so less frequent collisions / fewer collisions per second

do not accept fewer collisions unqualified

so rate decreases / reaction slows down
(e) mass lost of 2.2 (g)
$\frac{2.2}{270}=0.00814814$
allow ecf for values given for mass and time
0.00815 (g / s)
or
8.15×10^{-3}
allow 1 mark for correct calculation of value to 3 sig figs accept 0.00815 or 8.15×10^{-3} with no working shown for 4 marks
(f) correct tangent
0.007
allow values in range of $0.0065-0.0075$
7×10^{-3}
accept 7×10^{-3} with no working shown for 4 marks

M3.(a) both water vapour and ethanol will condense allow steam for water vapour allow they both become liquids
allow ethane condenses at a lower temperature allow some of the steam hasn't reacted allow it is a reversible reaction / equilibrium
(b) amount will decrease
because the equilibrium will move to the left
(c) more ethanol will be produced

M4.(a) (i) any two from:
ignore any conclusion drawn referring to data below 7.5 nm or above 20 nm

- 100% of (type 1 and type 2) bacteria are killed with a particle size of 7.5 to 8.5 nm
accept nanoparticles in the range of 7.5 to 8.5 nm are most effective at killing (type 1 and type 2) bacteria
- as the size increases (beyond 8.5 nm), nanoparticles are less effective at killing (type 1 and type 2) bacteria
- type 1 shows a linear relationship or type 2 is non-linear
- type 1 bacteria more susceptible than type 2 (at all sizes of nanoparticles shown on the graph)
allow type 2 bacteria are harder to kill
(ii) (yes) because you could confirm the pattern that has been observed allow would reduce the effect of anomalous points / random errors
allow would give better line of best fit
ignore references to reliability / precision / accuracy /
reproducibility / repeatability / validity
or
(no) because trend / conclusion is already clear
(b) magnesium loses electron(s)
oxygen gains electron(s)
gives full outer shells (of electrons) or eight electrons in highest energy level reference to incorrect particles or incorrect bonding or incorrect structure = max 3
or
(electrostatic) attraction between ions or forms ionic bonds accept noble gas structure

M5.(a) weaker bonds
allow (other substances) react with the silicon dioxide
or
fewer bonds
ignore weaker / fewer forces
or
disruption to lattice
do not accept reference to intermolecular forces / bonds
(b) (i) $\mathrm{Na}_{2} \mathrm{O}$ do not accept brackets or charges in the formula
(ii)

electrons can be shown as dots, crosses, e or any combination
2 bonding pairs
accept 4 electrons within the overlap

2 lone pairs on each oxygen
accept 4 non-bonding electrons on each oxygen
(c) lattice / regular pattern / layers / giant structure / close-packed arrangement
(of) positive ions or (of) atoms
(with) delocalised / free electrons
reference to incorrect particles or incorrect bonding or incorrect structure = max 2

