|     | energy given out correctly labelled                                                                                                                                         | 1 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | activation energy labelled correctly                                                                                                                                        | 1 |
| (b) | electrostatic force of attraction between shared pair of negatively charged electrons                                                                                       | 1 |
|     | and both positively charged nuclei                                                                                                                                          | 1 |
| (c) | bonds formed = 348 +4(412) + 2(276) = 2548 kJ / mol                                                                                                                         | 1 |
|     | bonds broken – bonds formed = 612 + 4(412) + (Br-Br) – 2548 = 95 kJ / mol                                                                                                   | 1 |
|     | Alternative approach without using C-H bonds<br>For step 1 allow = 348 + 2(276) = 900 kJ / mol<br>Then for step 2 allow 612 + (Br-Br) – 900 = 95 kJ / mol<br>193 (kJ / mol) | 1 |
|     | accort (1)102 (k) (mol) with no working shown for 2 marks                                                                                                                   |   |

1

accept (+)193 (kJ / mol) with no working shown for **3** marks -193(kJ / mol) scores **2** marks allow ecf from step 1 and step 2

#### (d) Level 3 (5–6 marks):

A detailed and coherent explanation is given, which demonstrates a broad understanding of the key scientific ideas. The response makes logical links between the points raised and uses sufficient examples to support these links. A conclusion is reached.

#### Level 2 (3–4 marks):

An explanation is given which demonstrates a reasonable understanding of the key scientific ideas. A conclusion may be reached but the logic used may not be clear or linked to bond energies.

#### Level 1 (1–2 marks):

Simple statements are made which demonstrate a basic understanding of some of the relevant ideas. The response may fail to make logical links between the points raised.

#### 0 marks:

No relevant content.

#### Indicative content

Size and strength

- chlorine atoms have fewer electron energy levels / shells
- chlorine atoms form stronger bonds
- CI-CI bond stronger then Br-Br
- C–Cl bond stronger that C–Br

#### Energies required

- more energy required to break bonds with chlorine
- more energy given out when making bonds with chlorine
- overall energy change depends on sizes of energy changes

#### Conclusions

- if C–Cl bond changes more, then less exothermic
- if C–Cl bond changes more then more exothermic
- can't tell how overall energy change will differ as do not know which changes more.

[14]

6

| (b) | allow <b>1</b> mark for correct formulae<br>sensible scales, using at least half the grid for the points | 1 |
|-----|----------------------------------------------------------------------------------------------------------|---|
|     | all points correct<br>± ½ small square<br>allow <b>1</b> mark if 8 or 9 of the points are correct        | 2 |
|     | best fit line                                                                                            | 1 |
| (c) | steeper line to left of original                                                                         | 1 |
|     | line finishes at same overall volume of gas collected                                                    | 1 |
| (d) | acid particles used up<br>allow marble / reactant used up                                                | 1 |
|     | so concentration decreases<br>allow surface area of marble decreases                                     | 1 |

2

so less frequent collisions / fewer collisions per second

so rate decreases / reaction slows down

(e) mass lost of 2.2 (g)

time taken of 270 s

allow values in range 265 – 270

## $\frac{2.2}{270} = 0.00814814$

#### allow ecf for values given for mass and time

0.00815 (g / s)

or

#### $8.15 \times 10^{-3}$

# allow **1** mark for correct calculation of value to 3 sig figs accept 0.00815 or $8.15 \times 10^{-3}$ with no working shown for **4** marks

(f) correct tangent

eg 0.35 / 50

1

1

1

1

1

1

1

1

0.007

### allow values in range of 0.0065 – 0.0075

 $7 \times 10^{-3}$ 

1

1

## accept $7 \times 10^{-3}$ with no working shown for **4** marks

[20]

| e |
|---|
|   |

| allow steam for water vapour                    |
|-------------------------------------------------|
| allow they both become liquids                  |
| allow ethane condenses at a lower temperature   |
| allow some of the steam hasn't reacted          |
| allow it is a reversible reaction / equilibrium |

1

1

1

1

1

[5]

(b) amount will decrease

because the equilibrium will move to the left

(c) more ethanol will be produced

because system moves to least / fewer molecules

| (i) | any <b>two</b> f | rom:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|-----|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     |                  | ignore any conclusion drawn referring to data below 7.5 nm or<br>above 20 nm<br>• 100% of (type 1 and type 2) bacteria are killed with a particle size of 7.5<br>to 8.5 nm                                                                                                                                                                                                                                                                                                                       |   |
|     |                  | <ul> <li>accept nanoparticles in the range of 7.5 to 8.5 nm are most<br/>effective at killing (type 1 and type 2) bacteria</li> <li>as the size increases (beyond 8.5 nm), nanoparticles are less effective at<br/>killing (type 1 and type 2) bacteria</li> <li>type 1 shows a linear relationship or type 2 is non-linear</li> <li>type 1 bacteria more susceptible than type 2 (at all sizes of nanoparticles<br/>shown on the graph)<br/>allow type 2 bacteria are harder to kill</li> </ul> | 2 |
|     |                  | <ul> <li>(ii) (yes) because you could confirm the pattern that has been observed<br/>allow would reduce the effect of anomalous points / random<br/>errors<br/>allow would give better line of best fit<br/>ignore references to reliability / precision / accuracy /</li> </ul>                                                                                                                                                                                                                 |   |
|     |                  | or<br>(no) because trend / <i>conclusion</i> is already clear                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|     | (b)              | magnesium loses electron(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 |
|     |                  | oxygen gains electron(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 |
|     |                  | <u>two</u> electrons (per atom)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 |
|     |                  | gives full outer shells (of electrons) <b>or</b> eight electrons in highest energy level<br>reference to incorrect particles <b>or</b> incorrect bonding <b>or</b> incorrect<br>structure = max <b>3</b>                                                                                                                                                                                                                                                                                         | 1 |
|     |                  | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|     |                  | (electrostatic) attraction between ions or forms ionic bonds                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |

accept noble gas structure

**M4.**(a)

#### **M5.**(a) weaker bonds

allow (other substances) react with the silicon dioxide

or

fewer bonds

ignore weaker / fewer forces

or

disruption to lattice

do not accept reference to intermolecular forces / bonds

1

(b) (i) Na<sub>2</sub>O

do not accept brackets or charges in the formula

1

1

1

1

1

1

[7]

(ii)



#### electrons can be shown as dots, crosses, e or any combination

2 bonding pairs accept 4 electrons within the overlap

- 2 lone pairs on each oxygen accept 4 non-bonding electrons on each oxygen
- (c) lattice / regular pattern / layers / giant structure / close-packed arrangement

(of) positive ions or (of) atoms